Asphalt Research Consortium

Subtask E2b-1.a:

Impact of current extraction techniques on properties of extracted RAP aggregates

University of Nevada Reno and NCAT

HMA Recycling Expert Task Group May 20, 2010, Auburn, Alabama

Develop a System to Evaluate the Properties of RAP Objective

- Evaluate impact of current extraction techniques on properties of extracted RAP aggregates.
- Extract aggregates from Lab-produce RAP mixes using:
 - Centrifuge (Trichloroethylene)
 - Reflux (Trichloroethylene)
 - Ignition oven

Develop a System to Evaluate the Properties of RAP Aggregate Sources

- Nevada: Rhyolite (UNR)
- California: Granodiorite (UNR)
- Alabama: Hard Limestone (NCAT)
- Florida: Soft Limestone (NCAT)

Develop a System to Evaluate the Properties of RAP Lab Produced RAP

- SP mix design: intermediate gradation.
- Subject <u>loose</u> samples to STOA (4 hrs at 275°F) followed by LTOA (5 days at 185°F).
- Extract aggregates from aged loose specimens.
- Measure extracted aggregates physical properties.

Develop a System to Evaluate the Properties of RAP Extracted Binder Contents

Ignition oven is generally the closest to the true binder content, followed by reflux, & lastly centrifuge.

Develop a System to Evaluate the Properties of RAP Measured Aggregate Properties

Property	Specification
Sieve Analysis	AASHTO T 27, T30
Coarse Aggregate Durability	AASHTO T 210
Fine Aggregate Durability	AASHTO T 210
Sand Equivalent	AASHTO T 176
LA Abrasion	AASHTO T 96
Specific Gravity and Absorption of Coarse Aggregate	AASHTO T 85
Specific Gravity and Absorption of Fine Aggregate	AASHTO T 84
Fine Aggregate Angularity	AASHTO T 304
Fractured Faces	ASTM D 5821
Percent of Loss in the Microdeval	ASTM D 7428
Soundness	AASHTO T 104
Aggregate Imaging System (AIMS)	

Develop a System to Evaluate the Properties of RAP Focus of the Presentation

- BSG & Absorption of coarse aggregates
- BSG & Absorption of fine aggregates
- Consequences of extraction method on SP mix design.
- Effect of RAP aggregate SG on VMA

Develop a System to Evaluate the Properties of RAP Coarse Aggregate – Bulk Dry Specific Gravities (Gsb)

Develop a System to Evaluate the Properties of RAP Fine Aggregate – Bulk Dry Specific Gravities (Gsb)

Develop a System to Evaluate the Properties of RAP Combined Aggregate – Bulk Dry Specific Gravities (Gsb)

Develop a System to Evaluate the Properties of RAP Coarse Aggregate – Absorption

Develop a System to Evaluate the Properties of RAP Fine Aggregate – Absorption

Develop a System to Evaluate the Properties of RAP Combined Aggregate – Absorption

Develop a System to Evaluate the Properties of RAP Summary of Paired Mean Comparisons Results for Various Aggregate Properties

Aggregate Properties		Centrifuge			Reflux		Ignition		
Aggregate Properties	SL	NS	SH	SL	NS	SH	SL	NS	SH
Sieve analysis									
- 1/2 inch sieve		4			4			4	
- No. 4 sieve		4		1	2	1		3	1
- No. 8 sieve	1	2	1	2	1	1	1	2	1
- No. 50 sieve	1	1	2	1	2	1		2	2
- No. 200 sieve	1	2	1	1	2	1	2		2
Coarse aggregate specific gravities									
 Bulk dry specific gravity 	2	1	1		2	2	3	1	
 Saturated surface dry specific gravity 	1	3		1	3		1	3	
 Apparent specific gravity 	1	3		1	3		1	3	
Fine aggregate specific gravities									
 Bulk dry specific gravity 		2	2		1	3	1	1	2
 Saturated surface dry specific gravity 	1	2	1		2	2	1		3
 Apparent specific gravity 	1	3		1	3			3	1
Coarse aggregate absorption	1	3		3	1			1	3
Fine aggregate absorption	3	1		4			2	1	1
Coarse aggregate durability index		2	2	1	2	1	1	-	3
Sand equivalent		2	2		2	2		2	2
LA abrasion mass loss	1	3			3	1		1	3
Uncompacted void content	3		1	3		1	3		1

Asphalt Research

Develop a System to Evaluate the Properties of RAP Consequences of the Extraction Method on the SP Mix Design

Aggregate Property	Centrifuge	Reflux	Ignition Oven
Passing #4 sieve	Close estimate 100% of time.	Close estimate 50% of time and 25%	Close estimate 75% of time and 25% of
		of time over- or under-estimate.	time over-estimate.
Passing #200 sieve	Close estimate 50% of time and 25%	Close estimate 50% of time and 25%	Over-estimate 50% of time and under-
	of time over- or under-estimate.	of time over- or under-estimate.	estimate 50% of time.
Combined bulk dry	Over-estimate 50% of time and	Over-estimate 100% of time. The	Over-estimate 50% of time and under-
Specific Gravity	under-estimate 50% of time. The	impact is masked by mixing.	estimate 50% of time. The under-
	under-estimate is likely to be caused		estimate is likely to be caused by
	by mixing.		mixing.
CA fractured faces	Close estimate 100% of time.	Close estimate 100% of time.	Close estimate 100% of time.
FA uncompacted	Over-estimate 25% of time and	Over-estimate 25% of time and	Over-estimate 25% of time and under-
voids	under-estimate 75% of time. The	under-estimate 75% of time. The	estimate 75% of time. The design will
	design will be conservative 75% of	design will be conservative 75% of	be conservative 75% percent of time.
	time.	time.	
FA sand equivalent	Close estimate 50% of time and	Close estimate 50% of time and	Close estimate 50% of time and over-
	over-estimate 50% of time. The	over-estimate 50% of time. The	estimate 50% of time. The design will
	design will be un-conservative 50%	design will be un-conservative 50%	be un-conservative 50% of time.
	of time.	of time.	
LA abrasion	Close estimate 75% of time and	Close estimate 75% of time and	Close estimate 25% of time and over-
	under-estimate 25% of time. The	over-estimate 25% of time. The	estimate 75% of time. The design will
	design will be un-conservative 25%	design will be conservative.	be conservative.
	of time.		

 SG of the combined gradation of RAP and virgin aggregates is required for the volumetric calculations of a mix design.

 BSG of each aggregate stockpile, including RAP aggregate needs to be determined for the calculation of BSG of combined aggregates.

• *Method A:* Difference in Blend G_{sb}

Centrifuge

• *Method A:* Difference in Blend G_{sb}

Reflux

• *Method A:* Difference in Blend G_{sb}

Ignition Oven

Method A: Difference in VMA

Centrifuge

Method A: Difference in VMA

Reflux

Method A: Difference in VMA

Ignition Oven

Similar analysis and plots were developed for Method B
and Method C.

- Method B was evaluated for three levels of assumed asphalt absorption for RAP aggregate:
 - P_{ha} (true value)
 - 75% of P_{ha} (under estimate absorption by 25%)
 - 125% of P_{ba} (over estimate absorption by 25%)

Extraction Method	RAP Content	Method A	Method B (0.75Pba)	Method B (1.00Pba)	Method B (1.25Pba)	Method C
Centrifuge	10%	Close estimate 100% of time.	Close estimate 100% of time.	Close estimate 100% of time.	Close estimate 100% of time.	Over-estimate 50% of time. The design will be un-conservative 50% of time
	30%	Close estimate 100% of time.	Over-estimate 25% of time. The design will be un-conservative 25% of time.	Close estimate 100% of time.	Under-estimate 100% of time.	Over-estimate 100% of time. The design will be un-conservative 100% of time
	50%	Over-estimate 25% of time. The design will be unconservative 25% of time.	Over-estimate 50% of time. The design will be un-conservative 50% of time.	Under-estimate 50% of time.	Under-estimate 100% of time.	Over-estimate 100% of time. The design will be un-conservative 100% of time

Extraction Method	RAP Content	Method A	Method B (0.75Pba)	Method B (1.00Pba)	Method B (1.25Pba)	Method C
	10%	Close estimate 100% of time.		Close estimate 100% of time.	Close estimate 100% of time.	Over-estimate 50% of time. The design will be un-conservative 50% of time
Reflux	30%	lof time. The design	· ·	Close estimate 100% of time.	Under-estimate 100% of time.	Over-estimate 100% of time. The design will be un-conservative 100% of time
		lof time. The design		Close estimate 100% of time.	Under-estimate 100% of time.	Over-estimate 100% of time. The design will be un-conservative 100% of time

Extraction Method	RAP Content	Method A	Method B (0.75Pba)	Method B (1.00Pba)	Method B (1.25Pba)	Method C
	10%	Close estimate 100% of time.	Close estimate 100% of time.	Close estimate 100% of time.	Close estimate 100% of time.	Over-estimate 75% of time. The design will be un-conservative 50% of time
Ignition Oven	I 30%	Under-estimate 25% of time	Over-estimate 50% of time. The design will be un-conservative 50% of time.	Close estimate 100% of time.	Under-estimate 50% of time.	Over-estimate 100% of time. The design will be un-conservative 100% of time
		Over- or under- estimate 25% of time. The design will be un-conservative 25% of time.	Over-estimate 75% of time. The design will be un-conservative 75% of time.	Close estimate 100% of time.	Under-estimate 100% of time.	Over-estimate 100% of time. The design will be un-conservative 100% of time

